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Abstract

In this paper we introduce a geometric description of Lagrangian and
Hamiltonian classical field theories on Lie algebroids in the framework of
k-symplectic geometry. We discuss the relation between the Lagrangian
and Hamiltonian descriptions through a convenient notion of Legendre
transformation. The theory is a natural generalization of the standard one;
in addition, other interesting examples are studied, in particular, systems with
symmetry and Poisson-sigma models.

PACS numbers: 03.50.—z, 02.40.Y, 11.10.Ef
Mathematics Subject Classification: 53D99, 53705, 70S05

1. Introduction

The Lie algebroid is a generalization of both the Lie algebra and the integrable distribution.
The idea of using Lie algebroids in mechanics is due to Weinstein [47], who introduced a new
geometric framework for Lagrangian mechanics. His formulation allows a geometric unified
description of dynamical systems with a variety of different kinds of phase spaces: Lie groups,
Lie algebras, Cartesian products of manifolds, or quotient manifolds (as in reduction theory,
in which reduced phase spaces are not, in general, tangent or cotangent bundles). For a survey
of further developments of this approach in relation to various mechanical problems, see [19].

One way of extending the theory to classical field theory is through the multisymplectic
formalism [32, 33], which was independently developed by Tulczyjew’s school in Warsaw
(see, for instance, [17]), by Garcia and Pérez—Rend6n [10, 11] and by Goldschmidt and
Sternberg [12], and has been revised by Martin [28, 29], Gotay et al [13] and Cantrijn et al
[9], among others.

An alternative to the multisymplectic formalism is Giinther’s polysymplectic formalism
[14] or equivalent presentations [36] involving k-symplectic structures defined independently
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by Awane [2, 3], Norris [34, 37-40] and de Leon et al [20, 22] (see also [21] and [23]).
This approach is the generalization to certain kinds of field theory of the standard symplectic
formalism of mechanics, the geometric framework for describing autonomous dynamical
systems; the crucial device in Giinther’s formalism is the introduction of a vector-valued
generalization of a symplectic form. It originally applied to theories with Lagrangians and
Hamiltonians that do not depend on the base coordinates ¢!, . .., f (in many cases space-time
coordinates), i.e. Lagrangian L (g, v,) and Hamiltonian H (¢’, p;*) that depend only on the
field coordinates ¢' and on the partial derivatives of the field, v/, or the corresponding momenta
pi. To treat more general situations we need to extend the formalism using k-cosymplectic
geometry [24, 25].

The purpose of this paper is to extend the k-symplectic approach to first-order classical
field theories on Lie algebroids. We present a geometric description of classical Lagrangian
and Hamiltonian field theories on Lie algebroids, and we show the relation between them
when the Lagrangian is hyperregular.

The paper is organized as follows. In section 2 we recall some basic elements of the
k-symplectic approach to first-order classical field theories. In section 3 we recall some
basic facts about Lie algebroids and their differential geometry, and the prolongation of a Lie
algebroid over a fibration, which will be necessary for further developments. In section 4
the k-symplectic formalism is extended to Lie algebroids. Subsections 4.1 and 4.2 describe
the extended Lagrangian and Hamiltonian formalisms, respectively, and in subsection 4.3 we
define the Legendre transformation on Lie algebroids and establish the equivalence between
the Lagrangian and Hamiltonian formalisms when the Lagrangian function is hyperregular.
Finally in section 5 we display examples of the application of the theory to the Poisson-sigma
model and first-order field theories with symmetries.

Throughout this paper, all manifolds and maps are C*°, the Einstein summation convention
is used, and k-tuples of elements are denoted by bold type.

2. Geometric preliminaries

In this section we recall some basic elements of the k-symplectic approach to classical field
theories [14, 36, 41].

2.1. The tangent bundle of k'-velocities of a manifold

Let Q be an n-dimensional differentiable manifold and 7y : TQ — Q its tangent bundle.
We denote by Tk1 Q the Whitney sum 7 Q® . @®T Q of k copies of T Q, with projection
rg : Tle — Q,té(vlq, ...,vkq) = ¢, where Vag € T,0,A =1,... k. Tle can be
identified with the manifold J§ (R¥, Q) of k'-velocities of Q, thatis 1-jets of maps o : R¥ — Q
with the source at 0 € R, say

k
SR, Q) =TQ - @TQ
jo{qa = (Vigs s Vkg)s
where ¢ = 0(0) and v4, = 0, (0)(% 0), @', ..., 5 being the standard coordinates on RX.

T Q is called the tangent bundle of k!-velocities of Q (see [35]).
If (¢') are local coordinates on U € Q, then the induced local coordinates (qi, V), 1 <
i<n,onTU = ré' (U) are expressed by

q'(vy) = q'(q), V' (vg) = vy(q"),
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and the induced local coordinates (¢', v},), 1 <i <n,1 <A<k, onT!U = (ré)_l(U) are
given by

qi(vlq, ey vkq) =4'(q), vg(vlq, ey vkq) = qu(qi).

Let f : M — N be a differentiable map. The induced map 7} f : /M — TN defined
by Tk1 f( jolo) = j(} (f o o) is called the canonical prolongation of f. Observe that

T f(igs - vkg) = (F@(v1g): - - - Fe(@)(vkg))

where Vigs---»Ukq € T,0,q9 € 0.
2.2. k-vector fields and integral sections
Let M be an arbitrary manifold.

Definition 2.1. A sectionX : M — TklM of the projection T}l‘,, will be called a k-vector
field on M.

To give a k-vector field X is equivalent to giving a family of k vector fields X1, ..., Xy,
and we write X = (X1, ..., Xy).

Definition 2.2. An integral section of the k-vector field X = (X, ..., Xi), passing through

a point x € M, is a map  : Uy C R* — M, defined on some neighborhood Uy of 0 € R¥,
such that ¥ (0) = x, and

a
* t aLA
¥ (t) ( |
or equivalently ¥ (0) = x and  satisfies X o Y = D, where 'V is the first prolongation
of ¥ to Tk1 M, defined by
]
seees Ya(t) <— ))
)y
where Yr¢(s) = Y (t+s).
A k-vector field X = (X4, ..., Xix) on M is said to be integrable if there is an integral
section that passes through every point of M.

) = XA (L) forevery te Uy, 1 <A<k,

yW: UycRY — T'M
, d
t — YOO =jgvh = <w*(t) (ﬁ

Remark 2.3. In the k-symplectic formalism, the solutions of field equations are the integral
sections of k-vector fields. In the case k = 1, this definition coincides with the classical
definition of the integral curve of a vector field.

In a local coordinate system, if 1 (t) = (1 (t)), then one has

) Ut
y ) = (w’(t),a% ) 1<A<k 1<i<n, @.1)
t
and v is an integral section of (X1, ..., Xi), where X, = X;% if and only if
oy’ i .
W:XAow, 1<A<Lk, 1<i<n. 2.2)
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2.3. The cotangent bundle of k'-covelocities of a manifold

Let Q be a differentiable manifold of dimension n and 7y : T*Q — Q its cotangent bundle.
Denote by (Tkl)*Q =T*0& s @T*Q the Whitney sum of k copies of 7*Q with the
projection map 7}, : (T}')°Q — Q.m(ay,. ..., o) = q. The manifold (7;')"Q can be
canonically identified with the vector bundle J 1(Q, R¥)y of k'-covelocities of the manifold Q,

the manifold of 1-jets of maps o : Q — R¥ with the target at 0 € R¥ and the projection map
g JN(Q, Ry — 0, ng(jq'!oo) = g, that is

JHQ. ROy = T* 0@ - &T*0
jleo = do1(), ... dox(q)),

where 04 = pry oo : @ — R is the Ath component of o and pry : R — R are the
canonical projections, I < A < k. For this reason, (7}!)"Q is also called the bundle of
k'-covelocities of the manifold Q.

If (g) are local coordinates on U C Q, then the induced local coordinates (¢°, p;) on
T*U = (nQ)’l(U) are given by

) . ol .
q'(ag) = q'(q), pileg) =g | —| |- 1<i<n,
aq' |,

and the induced local coordinates (qi , piA) on (Tkl)*U = (rré)il (U) are

d
04’ g

qi(alq""’aktz):qi(q)’ plA(alq""’akq):aAq< )’ 1<l<n7 1<A<k

“Q with a k-symplectic structure given by the family

We can endow (T})
) where each * is the 2-form given by

(@' ..., 55V =kerT7rg
CL)A = (JTSA)*LL)Q, 1 < A < k,

JTZA : (T!)"Q — T*Q being the canonical projection onto the Ath copy of 7*Q in ‘(Tk‘)*Q
and wg the canonical symplectic form on 7*Q. In local coordinates, w? = dg' A dp}
[2, 3, 36, 41].

3. Lie algebroids

In this section we present some basic facts about Lie algebroids, including features of the
associated differential calculus and results on Lie algebroid morphisms that will be necessary.
For further information on groupoids and Lie algebroids, and their roles in differential
geometry, see [4, 15, 26, 27].

3.1. Lie algebroid: definition

Let E be a vector bundle of rank m over a manifold Q of dimension n, and let T : E — Q be
the vector bundle projection. Denote by Sec(E) the C*°(Q)-module of sections of t. A Lie
algebroid structure ([, -1 g, pg) on E is a Lie bracket [[-, - g : Sec(E) x Sec(E) — Sec(E)
on the space Sec(E), together with an anchor map pg : E — T Q and its identically denoted
induced C*°(Q)-module homomorphism pg : Sec(E) — X(Q), such that the compatibility
condition

[o1, forlle = flloi, o2l + (pe(01) oz
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holds for all smooth functions f on Q and sections oy, o» of E (here pg(oy) is the vector
field on Q given by pg(o1)(g) = pe(oi1(g))). The triple (E, [[-, ‘g, pg) is called a Lie
algebroid over Q. From the compatibility condition and the Jacobi identity, it follows that
pe : Sec(E) — X(Q) is a homomorphism between the Lie algebras (Sec(E), [+, -1£) and
(X(Q), [, -])- The following are examples of Lie algebroids.

(i) Real Lie algebras of finite dimension. Any real Lie algebra of finite dimension is a Lie
algebroid over a single point.

(ii) The tangent bundle. 1f T Q is the tangent bundle of a manifold Q, then the triple
(TQ, [ ], idro) is a Lie algebroid over Q, where idrg : TQ — T Q is the identity
map.

(i) A less immediate example of a Lie algebroid may be constructed as follows. Let
m : P — Q be a principal bundle with structural group G. Denote by ® : G x P — P
the free action of Gon Pand by T® : G x TP — T P the tangent action of G on T P.
Then the sections of the quotient vector bundle tpg : TP/G — Q = P/G may be
identified with the vector fields on P that are invariant under the action ®. Since every
G-invariant vector field on P is -projectable and the standard Lie bracket on vector fields
is closed with respect to G-invariant vector fields, we can define a Lie algebroid structure
on TP/G. The resultant Lie algebroid over Q is called the Atiyah (gauge) algebroid
associated with the principal bundle & : P — Q [19, 26].

Throughout this paper, the role of the Lie algebroid is to stand in for the tangent bundle of
Q. In this way, one regards an element e of E as a generalized velocity, and the actual velocity
v is obtained when we apply the anchor map to e, i.e. v = pg(e).

Let (¢’ )i, be the local coordinates on Q and {e,}1<a<m @ local basis of sections of .
Given e € E such that t(e) = g, we can write e = y*(e)e,(q) € E4, i.e. each section o
is given locally by 0|y = y%e, and the coordinates of e are (g (e), y*(e)). A Lie algebroid
structure on Q is determined locally by a set of local structure functions pl, Cgﬂ on Q that are
defined by

]
pe(ey) = p‘l’a_qi’ [ew, eplle = Cl gey, (3.1)
and satisfy the relations
. dCy 9pt 90! .
i By v ol _ J B J Py _ ALY
Z ('Oa i +Comcﬂy> =0, Pam s = Ppo 5 = PyCap- (3.2)
cyclic(e, B,y) aq 8q 86]

These relations, which are a consequence of the compatibility condition and Jacobi’s identity,
are usually called the structure equations of the Lie algebroid E.

3.2. Exterior differential
A Lie algebroid structure on E allows us to define the exterior differential of E, d*:
Sec(/\l E*) — Sec(/\lJrl E*) as follows:

1+1
d (o, ..., 011) = Z(—l)HlpE(Gi)M(Ul, ey Oiy ey O141)

i=1

+ Z(_1)1+1M([Gls G]]Ev Oly.nny 6;7 ) O{}s .. 'Gl+1)v (33)
i<j
for u € Sec(/\[ E*)and oy, ..., 0541 € Sec(E). It follows that d is a cohomology operator,

that is (d¥)% = 0.
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In particular, if f : @ — R is a smooth real function, then df f(¢) = pg (o) f, for
o € Sec(E). Locally, the exterior differential is determined by
dfq’ = ple” and dfe” = —3Clye” AP,
where {¢“} is the dual basis of {e,}.
The usual Cartan calculus extends to the case of Lie algebroids: for every section o of E

we have a derivation j, (contraction) of degree —1 and a derivation £, = i, od +d o i, (the
Lie derivative) of degree 0; for more details, see [26, 27].

3.3. Morphisms

Let (E, -, -1&, pE) and_(E’, [-, -1g, pE) be two Lie algebr(ids over Q and Q’, respectively,
and suppose that = (&P, ®) is a vector bundle map, thatis ® : E — E’is a fiberwise linear
map over ® : Q — Q’. The pair (®, ®) is said to be a Lie algebroid morphism if
df(@*0’") = d*(d¥¢’), forall o’ € Sec(\'(E")*) and for all I. (3.4)
Here ®*0’ is the section of the vector bundle /\l E* — Q defined (for [ > 0) by
(CD*O—/)q (elv R e/) = Gé(q)(i(el)v ] 6(81))7 (3'5)

forg € Qande, ..., ¢ € E,. In particular, when Q = Q' and & = idy then (3.4) holds if

and only if

[® oo, ® ool = Ploy, oallk, pe(®oo) = pe(o), for o,01,0, € Sec(E).
Let (¢') be a local coordinate system on Q and (g') a local coordinate system on Q’. Let

{eo} and {ez} be local bases of sections of E and E’, respectively, and {e®} and {e°} their

respective dual bases. The vector bundle map @ is determined by the relations ®*g' = ¢'(q)

and ®*e% = qﬁg‘eﬁ for certain local functions ¢’ and ¢>g on Q. In this coordinate system

® = (®, ®) is a Lie algebroid morphism if and only if

Yy . ) Y
o0l — ol #Pcl, = ((pEY %9

“dq/ *9q'

9P .
— (pe)} a‘Z‘j) +Ch_ole3. (3.6)

where the (,oE)fx, ng are the structure functions on E and the (pog j;, (fg)_/ are the structure
functions on E’.
For more about the concept of Lie algebroids morphism, see for instance [8, 15, 32, 33].

3.4. The prolongation of a Lie algebroid over a fibration

In this subsection we recall a particular kind of Lie algebroid that will be used later (see
[8, 15, 19, 30] for more details).
If (E, [, -1g, pE) is a Lie algebroid over a manifold Q and w : P — Q is a fibration,
then
T TEP = UTPEP—> P,
peP

where
T7 P = {(¢,v)) € Exp X T, Plpg(e) = Tpm(v,)}

is a Lie algebroid called the prolongation of the Lie algebroid (E, [+, - g, pg) or the inverse-
image Lie algebroid; see for instance [15, 19]. The anchor map of this Lie algebroid is
p" :TEP — TP, p"(e,v,) = v,. In this paper we consider two particular Lie algebroid

6
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prolongations, one with P = E® - @®F and the other with P = E*® K @®E*, in
connection with which we use the following notation and results (for more details see [8, 15,
19, 30]).

If (¢°, u®) are local coordinates on P and {e, } is a local basis of sections of E, then a local
basis of Tp : TE P — P is given by the family {X,,, V;} where

0
p) and Ve(p) = (On(p); P

The Lie bracket of two sections of 7 P is characterized by the relations

. 9
Xo(p) = (ea(n(p)); p;(n(p))a—q,.

). 3.7
P

[Xa, Xl =ClpX,  [Xe, V™ =0 [V, V" =0, (3.8)

and the exterior differential is therefore determined by
d’TEPqi — ,oélX"‘, artry,t = & 1o
AP =it A xf, dT Y =0, o

where {X*, V!} is the dual basis of {X,,, V,}.

4. Classical field theories on Lie algebroids: a k-symplectic approach

In this section, the k-symplectic formalism for first-order classical field theories (see
[14, 36, 41]) is extended to the setting of Lie algebroids. Regarding a Lie algebroid
E as a generalization of the tangent bundle of Q, we define the analog of the field
solution of the field equations, and we study the analogs of the geometric structures of the
standard k-symplectic formalism. Lagrangian and Hamiltonian formalisms are developed in
subsections 4.1 and 4.2, respectively, and it is verified that the standard Lagrangian and
Hamiltonian k-symplectic formalisms are particular cases of the formalisms developed here.
Throughout this section we consider a Lie algebroid (E, [, - g, o) on the manifold Q and
denote this Lie algebroid itself by E.

4.1. Lagrangian formalism

k
4.1.1. The manifold ® E. The standard k-symplectic Lagrangian formalism is developed on
the bundle of k'-velocities of Q, Tk1 0, that is the Whitney sum of k copies of T Q. Since we
are thinking of a Lie algebroid E as a substitute for the tangent bundle, it is natural to consider

k
the Whitney sum of & copies of the Lie algebroid E, which we denote by & E = E® K OE,
k A
and the projection map T : @ E — Q, given by T(ey,,...,e,) = g. If (¢°, y*) are local
. k
coordinates on 77! (U) C E, then the induced local coordinates (¢°, y§) on T-'(U) € @ E

are given by

qi(elq, ceey ekq) =4q'(q), yg‘(elq, cees ekq) =y (eAq).

Remark 4.1. Consider the standard case in which E = T Q, pro = idro. If we fix local
coordinates (¢’) on Q, then we have the natural basis of Sec(T Q) = ¥(Q) given by {3/94'}.

k
For this basis of sections, C;; = 0 and the set Sec (& T Q) = Sec (T} Q) is the set X*(Q) of
k-vector fields on Q.
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4.1.2. The Lagrangian prolongation. Consider the prolongation Lie algebroid E over the
k
fibration T: ® E — Q, that is (see section 3.4),

TE@E) = (¢, v,) € E x T(®E)/prle,) = TT(y )}, @.1)

k
where b, e®E,. The following properties are derived from the general characteristics of
prolongation Lie algebroids (see, for instance, [8, 19, 30]):

k k
(i) TE(®E) = E x 7T (DE), with projection
N k k k
T TE(®E) = E x 19T (DE) —OE
has the Lie algebroid structure ([[-, -]]?, ,o? ), where the anchor map

~ k k k
P =E X 1oT(®E) : T"(BE) — T(SE)

is the canonical projection to the second factor. We will refer to this Lie algebroid as the
Lagrangian prolongation.

. k
(1) If (q’, yg‘) are local coordinates on @ E, then the induced local coordinates on

TE@®E) = E x 10T (SE)
= TO are

i o _a o
(¢, ¥4 2 ’wA)1gi<n,1<A<k,1<agm,

where
q'(eg. vn,) = 4" (@), ¥4 (eq. vb,) = ¥5(by), 42)
2(eqs vb,) = ¥ (ey), wi (eg vp,) = vp, (¥4)- .
(iii) The set {X, VaA} given by
Xy ®E >  TE@E)=E x 10T (®F)
b, = A(by) = (ea(q); pf;(q)aiq,. b )
L L kq 4.3)
VAL BE — TE®E) = E x 1oT(®E)
b, Vi(b,) = (Oq; e bq)

is a local basis of Sec(TE(éE)), the set of sections of ?éE (see (3.7)).
(iv) The anchor map ot TE (éE ) — T(éE ) allows us to associate a vector field with each
section &: éE — TE(éE) =E x TQT(éE) of"féE. Locally, if
£ = £, +E5V) € Sec(TH(@E)),
then the associated vector field is given by

c X(BE). 4.4)

- N 3
T — 1 o . + o
P (&) = p,§ 9 &4 3y

(v) The Lie bracket of two sections of ?é - is characterized by (see (3.8))

X, %17 =, X VE] =0 [VAVE] =o. 4.5)
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(vi) If {x*, V%} is the dual basis of {X;, V2], then the exterior differential is given locally
(see (3.9)) by

.y .0 d k
a7 (%)fZP&a_JiXa+aJ;VZ’ forall f e C™(®E)
k 1q Ya k (4.6)
dTE(@)Xy — _EC;//SXC( A Xﬁ, dTE(Gf)VX = 0.

k
Remark 4.2. In the particular case E = T Q, the manifold 7 £ (®E) reduces to T (Tk1 Q):

TO(&7Q) = T7%(1} Q)
— (g va)) € TQ x T(T, Q) /uy = T(ch) (vw,))
= {(T(e5) (vw,). vw,) € TQ x T(T Q) /w, € T 0}
= {vy, € T(T! Q) /W, € T} 0} = T(T}} Q). .7

k
4.1.3. Liouville sections and vertical endomorphisms. On T E(PE) we define two families
of canonical objects, Liouville sections and vertical endomorphisms which correspond to the
Liouville vector fields and k-tangent structure on Tk' 0 (see [14, 36, 41]).

k k
Vertical A-lifting (see for instance [8]). Anelement (e,, vy, ) of T75(® E) = E x 7oT(®E)
is said to be vertical if

Ti(eq. vb,) =04 € E, (4.8)
where
k k
7. TE@®E)=E x roT (®E) — E,

(egsvp,) = T (eq, qu) =e,
k
is the projection on the first factor E. The vertical elements of 7 £ (@E) are thus of the form
£k k
(04, vp,) € TE(BE) = E x 1T (®E),

k k
where vy, € T(® E) and b, eDE. In particular, the tangent vector v, is T-vertical, since by
4.1

0‘] = qu?(qu)'

. k k
In a local coordinate system (¢°, y§) on @ E, if (ez, vp,) € TE(DE) is vertical, then
ey =0, and

Up, = UpT—o Gqu(@ E).

Y3 In,

Definition 4.3. Foreach A = 1, ..., k, the vertical A-lifting is defined as the mapping

k k k
EV" Ex @ E) — TE@E)=E x1oT(®E)
(eg.by) > £ (eq,by) = (0, (eq),fj), (4.9)
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k k
where e, € E, b, = (blq, e bkq) €®E and the vector (eq),‘:: € Ty, (® E) is given by
d
(e f = % fbi,, ... ba, +5eq, ... by), 1<A<k, (4.10)
! S 15=0

k
for an arbitrary function f € C*°(&® E).

The local expression of (eq),‘:: is

N

k
e Ty, (® E), 1<A

o a9
(e)y' =y (eq)ga k. @4.11)

Alb,
k k
Since (eq)t‘:;‘ €T, (® E)is T-vertical, £ (eq, by) is a vertical element of TE(®E), and
by (4.3), (4.9) and (4.11) its local expression is

ad
£V (eg by) = (04, ¥ () —| | = y*(e))VE(b,), 1 <ALk, (4.12)
A b,
Remark 4.4.
(i) Inthe standard case (E = T Q, prg = idrg), givene, € T,Q and v, = (vi4, ..., V) €
Tk1Q7
(e)VA(f)—i f Vs +se Ue) 1<A<k
q)v, _dS - lyr -5 VA, qs o Yk )s X XK

that is the vertical A-lift to Tk1 Q of the tangent vector ¢, (see, for instance, [14, 36, 41]).
(i) When k = 1,§V1 = £V : E x oE — TFE is the vertical lifting map introduced by
Martinez in [30].

~ k k
Liouville sections. The Ath Liouville section A, is the section of ?é o TE@® E) >® E
given by

~ k k k
Ay ®E — TE@E)=E X 10T (®E)

_ 1 <ALk,
b, = Aalby) =" (pra(by),by) =&V (bay. by),
k k
where b, = (by,, ..., bx,) €BE and pry :®E — E is the canonical projection over the Ath
k

copy of E in ®E. From the local expression (4.12) of £4, and since

V¥ (bag) = ¥5(bigs -, brg) = ¥5(by),
A4 has the local expression

Ag=) ysvi, 1 <A<k, (4.13)

a=l1

Remark 4.5. In the standard case, A 4 1s the vector field:

Ap: T Q - T(1/0Q)
vy = (Uqu ey (Uk)q) = (vA‘])\‘I/:’

that is the Ath canonical vector field on Tk' 0.

10
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In the standard Lagrangian k-symplectic formalism, the canonical vector fields
Aq, ..., Ay allow us to define the energy function. Analogously as we will see below,
the energy function can be defined in the Lie algebroid setting using the Liouville sections
Ay, ..o, Mg

k
Vertical endomorphisms on 7 £ (®E). The second important family of canonical geometric

k ~ ~
elements on 7 £ (@E) is the family of vertical endomorphisms J', ..., J*.

k
Definition 4.6. For A =1, ...,k the Ath vertical endomorphism on TE(® E) = E x roT
k
(DE) is the mapping
~ k k
JY: TE@E) — TE@E

~ 4.14)
(eg-vn,) > JA(eq,vn,) =" (eq. by),

k k
where e, € E, b, = (blq, ey bkq) €ODE and vy, € Ty, (BE).

k
Lemma 4.7. Let {Xa, Vo/?} be a local basis of Sec(TE(DE)) and let {X“, VX} be its dual
basis. The corresponding local expression of J* is

7A=Zv;‘®)c“, 1< A<k 4.15)
a=1

Proof. By (4.3) and (4.12),

TA (Ao b)) = £ (ea(q), by) = ¥ (ea(@)V) (by) = VA(b,),
7A(Va3(bq)) =&" (0g, bg) = Op

g °
k k
foreachA,B=1,...,k,a=1...,m, where b, €®E is an arbitrary element of ®E. O

Remark 4.8.

(i) In the standard case (E = T Q, p = idrp), the JA constitute the canonical k-tangent
structure J', ..., J¥on T} Q.

(ii)) When k = 1, 7 is the vertical endomorphism defined by Martinez [31] on 7% (T Q), the
prolongation of the Lie algebroid Eover tp : TQ — Q.

4.1.4. Second-order partial differential equations (soppEs). In the standard k-symplectic
Lagrangian formalism one obtains the solutions of the Euler—Lagrange equations as integral
sections of certain second-order partial differential equations on Tk1 Q. In order to introduce
the analogous object on Lie algebroids, we note that in the standard case a sOPDE £ is a section
of the maps

r’;kl o' (1! Q) - TlQ
(Viwgs o Vhw,) > W
and
T (z5) - T (T Q) - TQ

(vlwq, ce vkwq) = (qu (té)(vlwq), oy Ty, (té)(vkwq)),

11



J. Phys. A: Math. Theor. 42 (2009) 385209 M de Lebn et al

where rg : T O — Q denotes the canonical projection of the tangent bundle of k'-velocities.
Since T}! (Tkl Q) is the Whitney sum of k copies of T(Tkl Q), it is natural to think that in the

k
Lie algebroid context its role will be played by the Whitney sum of k copies of 7F(®E), that
is

k k k k
(TE)W(®E) :=T*@E)® - - ®T*(OE).
Furthermore, the maps
~k Ent K E K k E K k
T, ¢ (T*ZW(OE)=T@E)® --- @T"(®E) — ©F
®F
((alq, vlb,,), cees (akqa vkbq)) = b,

and

~k Enl (& E KX k E X k

T (TNW@E)=T(@®E)® ---®T°(®E) — OQE

((a1gsvin,)s - axgs v, )) = (a1gs - arg)s

play the roles of rle and Tk1 (tg), respectively. In fact, when E = T Q there is a
diffeomorphism between T (T;! Q) and 772 (T;! Q) given by (see remark 4.2)

T(T/ Q) =T"%(T/ Q) = (T Q) x 10T (I} Q) = T(T}! 0)

Uwq = (qu (Tg) (Uwq)’ qu)’
under which diffeomorphism the map

~k L (7TON (] _ 7l 1
réTQ.(T w(Tl0) =1 (T/0) > T/ 0

corresponds to TTkkl : TN(T! Q) — T, Q, since

0
7 o (B (76) (1w, ) v, ) (T, (76) (v, ). v, )) = W
= f,;(,le(Ulwq, ey Ukwq).

and the map
T @O 0) =T (T/0) > T Q
corresponds to T}! (‘Cé) :THT! Q) — T/} 0, since

T (T, (70) (viw,): w1, ) -+ (T, (70) (Vi ) 0k, ))

= (qu (Té)(vlwq), e TWI/ (Té)(vkwq)) = Tkl (IZ)(vlwq’ T vkwq)'
Remark 4.9. For simplicity we denote by (a,, vy, ) an element
((alq, U]bq), ey (akq, Ukbq))

k k k k k

of (TONGE) = TE@E)® -+ @TE(@®E), where a;: = (ay,, ..., ar,) €®E and
k

Vbql = (Ulbqr ey Ukbq) € Tkl(GBE)

We are now in a position to introduce soppEs on Lie algebroids.

k
Definition 4.10. A second-order partial differential equation (SOPDE) on @ E is a map

k k
& OF — (TF)}(BE) that is a section of?gE and T¥.

12
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k k
Since (7F) ,i(GBE ) is the Whitney sum of k copies of 7*(®E), we deduce that to give a
section & of T is equivalent to giving a family of k sections &, ..., &, of the Lagrangian
OF

k
prolongation 7 £ (®E) obtained by projecting £ on each factor.
To characterize soppEs on Lie algebroids we need the following.

Definition 4.11. The set

k
Adm(E) = {(az. v,) € (T5)(® E) | T (ag, w,) = TF (a5, v,)}

OF
Eyi K
={(az. vn,) € T (@ E) | a, = b,} (4.16)
is called the set of admissible points of E.
k k
Proposition 4.12. Let & = (&1,...,&) :® E — (TE)[(® E) be a section of T~ . The

OF
following statements are equivalent.

(i) & takes values in Adm(E) .
(ii) & is a SOPDE, that is T\ o & = idéE )

(iii) TA(EQ) = Mg forall A= 1, ... k.

Proof. From (4.16) it is easy to prove that (i) and (ii) are equivalent. The equivalence of (i)
and (iii) is a direct consequence of the definitions of J4, A, and £V4. U

Using proposition 4.12 (iii), one easily deduces that the local expression of a SOPDE & =

¢Er1,.... &) 1s
Ex = Y5 Xy + (EDGVE,

where (§4)% € Coo(éE).

k k
Proposition 4.13. Let& = (§,...,&) :® E — (TE)[(® E) be a section of T . Then
OF

~ ~ k k

(PTG, ... p"(80): ®E — T, (BE)

k
is a k-vector field on ®F, where
s gk k k
pT T (®E)=E x 19T (®E) — T(BE)
k

is the anchor map of the Lie algebroid T (DE).
Proof. Directly by section 4.1.2 (vi). |

In local coordinates

l

= . 0 0 k
pr(Ex) = p;yj‘ia—q. + ("SA)%W € ¥(DE). 4.17)
B

Definition 4.14. A map
.k
n:R* > E

13
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is an integral section of the SOPDE & if n is an integral section of the k-vector field
(P (&1), ..., pT (&) associated with &, that is

~ a
(T () (1) = n. (V) (W
t

>, 1 <ALK (4.18)

If n is written locally as n(t) = (1 (t), n%(t)), then from (4.17) we deduce that (4.18) is
locally equivalent to the identities
! o i~ ang B
= 140 p (T(N(D)), Al = (Ea) (D)), (4.19)

t

an
art |,

k
where T :@ E — Q is the canonical projection.

4.1.5. Lagrangian formalism. In this section we develop an intrinsic and global geometric
framework that allows us to write the Euler-Lagrange equations associated with a Lagrangian

k
function L :® E — R on a Lie algebroid. We first introduce some geometric elements
associated with L.

Poincaré-Cartan sections. The Poincaré—Cartan 1-sections ©4 are defined by
k k
e ®E — (TE@E)"
b, +— 07 (b,),
where
A . E(n
07y : (T5@E)y, — R
k ~
qu = (e‘]’ qu) > (®2)bq (qu) = (dTE(eBE)L)b,,((JA)bq (qu))'

Using (4.6) with f = L,

(©7)(by)Zy, = (@ L), (T, 2b,) = (07((T")n, Zn,))L.  (4.20)

k k o~ k
where b, €® E, Zy, € [T5(® E)lp, and p* ((J*)y, Zp,) € Ty, (DE).
The Poincaré—Cartan 2-sections
k k k
Q@ E— (TH® E)' A (TE(@® E))*, I<A<k
are defined by

k
Q= —dT" s, 1< A<k,
that is

Q&L &) = —q®é(sl, &) i i
=[p" E)(OLED) — [pTEDI(OF (&) + O ([&1, &17), (4.21)

k - - k
where £, & € Sec(7 E(®E)) and (o7, [, -]7) denotes the Lie algebroid structure of 7% (DE)
defined in section 4.1.2.

To find the local expressions of ®*L‘ and 92, consider {Xa, Vf }, a local basis of sections

k
of Sec(7E(@®E)), and its dual basis { X, V}. By (4.4), (4.15) and (4.20),

@A—BLX“ 1<A<k; (4.22)
L — o ’ X X ) .
ayy

14
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and by the local expressions (4.3), (4.4), (4.5), (4.21) and (4.22),

1{ . 9L . 9L L 9%L
Qf =5 (phrrg —Ph——g +Cly— | XA X+ ——— X AV (4.23)
2\ "q'ayy dq' 0y, 9ya dypdyy

Remark 4.15.
(i) Whenk = 1, ©] and ] are the Poincaré—Cartan forms of Lagrangian mechanics on Lie

algebroids (see, for instance, [8, 31]).

(i) When E =T Q and prg = idrg,

Q7 (X, Y) = (X, ), <A<

where X and Y are vector fields on 7,' Q and w!, ..., w} are the Lagrangian 2-forms of
the standard k-symplectic formalism, defined by a)f = —d(dL o J#), where d is the usual
exterior derivative.

k
The energy function. The energy function E; :® E — R defined by the Lagrangian L is
k
Er=) p"(A)L—L,
A=l
and from (4.4) and (4.13) one deduces that E; is given locally by

£ oL
E, = AX_} Yo L. (4.24)
Morphisms. We generalize the Euler—Lagrange equations and their solutions to Lie algebroids
in terms of a particular Lie algebroid morphism.

In the standard Lagrangian k-symplectic formalism, a solution of the Euler—Lagrange
equations is a field ¢ : R — Q with a first prolongation ¢V : R¥ — T,! O that satisfies those

equations, that is
* L L
¢ \ 0V Ly 9q" |y

d
2

A=1
The map ¢ naturally induces the Lie algebroid morphism
T¢
TRF —=TQ
Trk l J/TQ
k— >

RF ——Q

and in terms of the canonical basis of sections of T, {%, R 387}’ the first prolongation of

¢, ¢!V, can be written as

o0 = (n6() ) 7o)
Aot ) T ek | ) )

For a general Lie algebroid we shall derive the field-theoretic Euler-Lagrange equations
in such way that their solutions are Lie algebroid morphisms ® = (®, ®) between TR and
Ea

TR —2> F

Rk?Q

15
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~ k
with an associated map ® : R¥ —@E that satisfies those equations and is given by

3R > SE=FEa.  oF
t - (@), ..., Ple(D)),

where {e A}’j1=1 is a local basis of local sections of TR,

If () and (¢') are local coordinate systems on R¥ and Q, respectively; {e4} and {e,} local
bases of sections of 7« and E, respectively, and {e“} and {¢*} the respective dual bases, then
D(t) = (¢’ (t)) and P*e” ¢ e4 for certain local functions ¢’ and ¢% % on R¥, the associated
map o is given locally by <I>(t) = (¢'(t), 9% % (1)), and the Lie algebroid morphism conditions
(3.6) are

3¢’ 0% 9og

iga _ o 4B o
pa¢A = m, 0= 8[‘_3 — W +Cﬂy¢B¢A' (4.25)

Remark 4.16. In the standard case (E = T Q), the morphism conditions reduce to

;¢ 00, _ 395
L= — and —= = ,
4= 5 3B " ra

i.e. in considering morphisms we are considering the first-order prolongation of fields

¢:RF - Q.
k
The Euler-Lagrange equations. Given a regular Lagrangian function L :@ E — R, it

. . . k k k k

is natural to consider sections & = (&1, ..., &) of (TE)(BE) = TE@E)® -+ ©TE(®
k

E) —&®E such that

k k
> i, Qf =dT P, (4.26)

equation (4.26) being the analog of the geometric Euler-Lagrange equations of the standard
k-symplectic Lagrangian formalism.

Each &, here is a section of the Lagrangian prolongation 7 £ (éE ), and with respect to a
local coordinate system (qi , yg‘) on éE and a local basis {e, } of Sec(E) it is given locally by
Eq = ES Xy + (EQLVE.
Hence, by (4.6), (4.23) and (4.24), equation (4.26) is expressed locally as follows:
g 9°L ;9L y OL 8 92L i 9L oL
5 <p“ aqiay?  Pagiays +Cﬂ“m) BRI p"’(y’*m - 5)
9’ « 0°L
dypoyy o dypoys

§a

Since L is regular, that is the matrix (a ajaLyﬂ ) is regular, the above equations reduce to
Ya0Yp
. 0°L 0°L S oL oL
B i B i By
Ppr—ma tENp——5 = Lo+ YaCham>
AP aq ayg aysayh  TCagtTATPay) 4.27)
§X =4

16
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~ k

Thus £ is a soppe. If @ : @k — @ E, the map associated with a Lie algebroid morphism,
@ : TRF — E, is such that ®(t) = (¢' (1), ¢%(t)) is an integral section of &, then by condition
(4.19) and equations (4.27) we obtain

api| 9L dgh| L . oL
) L L i)
Ot2 1 9q' Y3 [5wy 91" [(9ySayy |3 99" |3 AT
¢! .
x| = Pada (0,
arh |,

Iy | 9% B ey iV
0= — +C% t t),

a8 | it |, 5y PO, (1)

where the last equation is a consequence of the morphism condition (4.25). These equations
can also be written in the form

k
0 oL 0L B oL
_ — p:x—l +¢ Cya_

; arA (3)’2( 5(()) T A P8

8¢i i o

al_A = pa¢A(t)9 (4.28)
t
I9a| _ 9%k p

0= - +Cs, P (DB ().
arB |, arA |, ByY'B A

If E is the standard Lie algebroid T Q, then these are the classical Euler—Lagrange
equations of field theory for the Lagrangian L : Tk1 Q0 — R. In what follows (4.28) will be
called the Euler-Lagrange equations of field theories on Lie algebroids.

Remark 4.17.

(i) Equations (4.28) are obtained by Martinez [33] using a variational approach in the
multisymplectic framework.

(i) When k = 1, equations (4.28) are the Euler-Lagrange equations on Lie algebroids given
by Weinstein [47].

(iii) When E = T Q, equations (4.28) coincide with the Euler-Lagrange equations of the
Giinther formalism [36].

The results of this section can be summarized in the following.

k
Theorem 4.18. Let L :® E — R be a regular Lagrangian, and &, . . . , & be k sections of
k k
?éE : TE(®E) —@E, such that
k i

> i, Qf =dT @ E,

A=1
Then

(i) £ = (&1, ...,&) is a SOPDE.

~ k

(ii) If ® : R —@ E is the map associated with a Lie algebroid morphism between TR* and
E, and is an integral section of &, then it is a solution of the Euler—Lagrange equations of
field theories on Lie algebroids (4.28).

17
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Remark 4.19. Rewriting this section for k = 1 affords Lagrangian mechanics on Lie
algebroid (see section 3.1 of [8] or section 2.2 of [19]).

Finally we point out that the standard Lagrangian k-symplectic formalism is that particular
case of the Lagrangian formalism on Lie algebroids in which E = T Q, the anchor map pro
is the identity on 7' Q and the structure constants Cgﬁ = 0. In this case

k
e the manifold ®E is T,' Q, T72(T}! Q) is T(T}! Q) and (T79)(T}! Q) is T (T} Q):
o the energy function £, : T! Q — Ris given by E; = Zix:l A4(L) — L, where A, are
the canonical vector fields on Tkl 0 (see remark 4.5);
k k
e asectioné (@ E — (TE),i(@ E) is a k-vector field £ = (&1, ..., &) on TkIQ, thatis & is
a section of TTkk'Q NIl Q) — T 0;
e a SOPDE & is a k-vector field on 7! Q that is a section of T} (z/5) : T (T! Q) — T} 0;
e if f is a function on 7! Q, then

a”(10) vy = af ),
where d f denotes the standard exterior derivative and Y is a vector field on Tk' 0;
° QQ(X, Y) = wf 4(X,Y), where a)L, A = 1,...,k, are the Lagrangian 2-forms of the
standard k-symplectic formalism, given by wj = —d(dL o J*);
e equation (4.26) can be written in the form
k
Y is, 0f =dEy,
A=1
that is as the geometric Euler—Lagrange equations of the standard Lagrangian k-symplectic
formalism;
e the map ® associated with the Lie algebroid morphism (T'¢, ¢) between TR¥ and T Q
that is induced by a map ¢ : R¥ — Q is the first prolongation ¢V of ¢ :

~ 0 a
so- ({3} (3])

(see definition 2.2).
Thus, by theorem 4.18, the following corollary summarizes the standard Lagrangian
k-symplectic formalism [14, 36, 41].

Corollary 4.20. Let L : Tk1 O — R be a regular Lagrangian and & = (&, . .., &) a k-vector
field on Tk1 O such that

k
> ig,0f = dE;.
A=l

Then

(i) & ii a SOPDE;
(ii) if ® = ¢V is an integral section of the k-vector field &, then it is a solution of the
Euler-Lagrange ﬁeld equations of the standard Lagrangian k-symplectic field theory,

z o
arh |, BvA s0) 04

A=

. d(g' o )
vA(dD(t))zat—A )
<I>(t) t

18
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4.2. Hamiltonian formalism

In this subsection we extend the standard Hamiltonian k-symplectic formalism to Lie
algebroids. Throughout, we consider a Lie algebroid (E, [+, -llg, pg) over a manifold Q,
and the dual bundle, t* : E* — Q of E.

k

4.2.1. The manifold @E*. The arena of the standard Hamiltonian k-symplectic formalism
is the bundle (Tkl)* Q of k'-covelocities of Q, that is the Whitney sum of k copies of 7*Q. In
generalizing the theory to Lie algebroids it is natural to consider that the analog of (Tkl )* Qis

k
OE* = E*® K @E*, the Whitney of k copies of the dual space E* with the projection map
~x% k * ~x/ % *
T BET — 0, r(alq,...,akq)zq.
If (¢, y) are local coordinates on (*)~'(U) € E*, then the induced local coordinates
) k
(", y2) on (T*)~'(U) COHE* are given by

*

q'(@ ... al)=4q"@,  vilai.....a;

q

4.2.2. The Hamiltonian prolongation. We next consider the prolongation of a Lie algebroid
k
E over the fibration T*: @E* — Q, that is (see section 3.4)
k k N
TH(@E™) = {(eq, vny) € E x T(®E*)/pr(ey) = T(T*)(vp;)}- (4.29)

Taking into account the description of the prolongation 7 £ P and the results of section 3.4
(see also [8, 19, 30]), we obtain

k k k
() TE(®E*) = E x roT(®E*) is a Lie algebroid over &E * with the projection
k k k
?éE* :TE(®E") = E x 1oT(®E*) — DE*,

and Lie algebroid structure ([, -17, p* ), where the anchor map

e k k k
pt =E X 1oT(®E*) : TH(®E*) — T(BE™)
is the canonical projection onto the second factor. We refer to this Lie algebroid as the
Hamiltonian prolongation.

A k ‘
(i) Local coordinates (¢°,y2) on @ E* induce local coordinates (g, y2,z% wZ) on
k k
TE(@®E*) = E x 70T (®E*), where
q'(eqvne) =" (@), yi (g, vw;) = v (B), @30,
Z“(eq, va) = ya(eq), wg(eq, Ub;) = Up; (y(f). -
(iii) The set {Xy, V5} given by
k k k
Xy: GE* — TE@E*) = E X 1oT(®E*)
. d
by = Ay = <ea(q); p;(q)a—q,. >
b*
g 431)

k k k
VY @E* —  TE@E*) =E x 1oT(BE")

2h)
bj;’

b; = VX (b;) = (Oq, @
k
is a local basis of Sec(7 £ (®E *)), the set of sections of ?éE* (see (3.7)).
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o k k , .
(iv) The anchor map p° : TE(QE*) — T(®E*) allows us to associate a vector field with

k k
each section £&: @E* — TE(DE*) of ?éE*' Locally, if £ is given by

A £ X
£ =E%X, +&£)V] € Sec(T"(DEY)),
then the associated vector field is
7 i O 4 0 ko
p" (&) = p,é 3o +&, — € X(QE"). (4.32)
q' ayy

(v) The Lie bracket of two sections of ?éE* is characterized by the relations

[, ] =clx, [x VA =0 [V vi] =0 @33)

(see (3.8)).
(vi) If {x°, Vof‘} is the dual basis of {X;, V%}, then the exterior differential is given by
L. ] a k
d7"EED £ — p(’xa—fi)(“ + a—fAVO’?, forall f € C®(DE™)
k ! Ya k (4.34)
dTE Y = Ly A X dT @A —
2 o ’ Y
(see (3.9)).

k
Remark 4.21. In the particular case E = T Q, the manifold 7Z(® E*) reduces to
T((Tkl)* Q). The proof is analogous to that of remark 4.2.

k k
4.2.3. The vector bundle TE(® E*)® KoaTE (®E*). In the standard Hamiltonian k-
symplectic formalism one obtains the solutions of the Hamilton equations as integral sections
of certain k-vector fields on (Tk')* 0, that is certain sections of

T(krk‘)*Q (1)) — (1) e

k * ..
Since on Lie algebroids 7% (6 E *) plays the role of T((7;!)" Q), it is natural to assume
that the role of
k

L) Q) =T((T) Qe - oT((T¢) Q)
is played by
(TELBE"): = TE@EH® - oTH(SE),

k k k
the Whitney sum of k copies of 7 £ (@E *) with canonical projection 7% : (7F) ,'( (BE*) —> &
SE*

E* given by
~k 1 k
TéE*(Z"Z’ cos Zy) =],
k
where Z{)‘* = (aaqy, vaZ) e TE(@E*),A =1,...,k. We now prove that there exists a
q

k
k-vector field on @E * associated with each section & of T8 . Note that to give a section
OE*

£: éE* — (TE),i(éE*)) = TE(éE*)eB A @TE(éE*)
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of T¢  is equivalent to giving k sections &,...,& of the Hamiltonian prolongation

OE*
k k
TE(®E *), namely the projections of & on each summand 7 £ (DE *).

Proposition 4.22. Let £ = (£',..., &) be a section of T . Then
SE*

— — ko ko
(T (ED. - 0T (E)): BE* — T (BE™)
k — k
is a k-vector field on ®E *, where p*  is the anchor map of the Lie algebroid TE (DE *).

Proof. Directly from (4.32) and the above remark. O

4.2.4. Hamiltonian formalism. Let (E, [, -1k, pg) be a Lie algebroid on a manifold Q, and

k
H :®E* — R a Hamiltonian function. To develop the Hamiltonian k-symplectic formalism
on Lie algebroids, we first generalize the Liouville forms of the standard case.

The Liouville sections Liouville 1-sections are defined to be sections of the bundle
k k
(TE(®E*))* —@E * such that
k k
04 @ E* — (TE@® EY)*

3 A
bq — ®b2

k
where Oy, : (T5(® E*))y;, — Ris the function given by
q

(eg-vm;) > O (eq. vm;) = b (eg). (4.35)
k k
foreache, € E, b(’; = (blz, e ka) €e®E* and vp; € Ty (BE *). Liouville 2-sections
k k k
QY E* - (TE@® EN' A (TE(@® EY))*, 1<A<k

are defined by

k
QA — _dTE(eBE )@A,

K * . . . . . k
where d7" ") denotes the exterior differential on the Lie algebroid 7 E(@®E*) (see (4.34)).

k
Locally, if { X, Vg} is a local basis of Sec(7*(@E *)) and {X{, V§} its dual basis, then
by (4.31),

04 = Zygxﬂ, 1< A<k, (4.36)
p=1
and by (4.32), (4.33), (4.34) and (4.36),
1
QA=ZXﬂAv§+§chyyg‘Xﬁ/\XV, 1< A<k (4.37)
3 B.y.s
Remark 4.23.

(i) Whenk = 1, the Liouville sections introduced here are the Liouville sections of mechanics
on Lie algebroids; see Martinez [8, 31].
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(i) When £ =T Q and pro = idrg, then
QY (X, Y) =0’ (X, Y), 1< A<K,
where X, Y are vector fields on (Tkl)* Qand @', ..., " are the canonical 2-forms of the

standard Hamiltonian k-symplectic formalism.

The Hamilton equations.

k
Theorem 4.24. Let H :® E* — R be a Hamiltonian and
k k k X k
E=E&.....8) ®E > (TF)(® E) =T*(@E"® - @T"(®E")

a section of TF  such that
®E*
k

ok
Y ig, @4 =dT @ H, (4.38)
A=l
k
Ify : RX =@ E* is an integral section of &, then W is a solution of the following system of
partial differential equations:

; k

oY’ 0H oy s ,p 0H - 0H

— =p— d —* =—|C —+p—]. 4.39
1A Pa dyA an Z 9tA af ¥s ayg P EPL ( )

A=1

Remark 4.25. In the particular case £ = TQ and p = idrg, equations (4.39) are the
Hamilton field equations. Accordingly, equations (4.39) are called the Hamilton equations for
Lie algebroids.

k k
Proof. Consider {X,, Vg}, a local basis of sections of ?éE* :TE(@E*)— @®E*. Each &,
in the statement of the theorem can be written in the form

Ea = E1X + (Vs (4.40)
and by (4.34), (4.37) and (4.40) the local expression of (4.38) is
«  OH
§p = NE

k 4.41)
A s ¢ 9H i OH

s =— (s —+ni—)-

A=1 Byﬁ dq

k .
Also, if v : R @ E*, ¥ (t) = (W ), yA (t)) is an integral section of &, that is i is

=~k =k . k
an integral section of (p* (§1), ..., p* (&)), the associated k-vector field on GE *, then
gy Vg
B i _ B __ B
Y (4.42)
By (4.41) and (4.42),
; k
oyt 0H . A 9H . 9H
7 A B S e (U |
ard  dys —~ arA GAYS a4’ 0

Remark 4.26. When k£ = 1, this theorem summarizes the Hamiltonian mechanics on Lie
algebroids (see section 3.2 of [8] or section 3.3 of [19]).

The standard Hamiltonian k-symplectic formalism is the particular case of the general
formalism on Lie algebroids in which £ = T Q and pg = idr¢. Specifically in this case,
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e the manifold é E*is (Tkl)*Q, TTQ((TkI)*Q) is T((Tkl)*Q) and (TTQ),l((Tkl)*Q) is

T ((T) 0):
e a section
k * EN1 k *
§DE = (T7)(®EY)
is a section of r(T yeg Tl((Tkl)*Q) — (Tkl)*Q, i.e. ak-vector field € = (&, ..., &) on
(Tkl)*Q;

e if f is a function on (Tkl) *0, then

k
@ E YY) = df ),
where d f denotes the usual exterior derivative and Y is a vector field on (Tkl) * 0;
. QUX,Y) =0 (X,Y) (A=1,...,k),

where the w” are the canonical k-symplectic 2-forms on (Tkl)* 0;
e equation (4.38) reduces to

k
Z ie, o' =dH
A=1
(so equation (4.38) is the geometric version of the Hamilton field equations of the standard

k-symplectic formalism).

Accordingly, by theorem 4.24 the standard Hamiltonian k-symplectic formalism is
summarized in the following.

Corollary 4.27. Let H : (Tkl) O > Rbea Hamiltonian formalism and & = (¢, ...,&) a
k-vector field on (Tk') * O such that

k
> ig, 0t = dH.
A=1

Ify :RF - (Tkl) 0. Y(t) = (wi(t), lﬂiA (t)) is an integral section of &, it is a solution
of the Hamilton field equations in the standard k-symplectic formalism, that is

ay !
Z 9t aA

A
ot ot

8H oH

= i=1,...,n. (4.43)
t 81’?

t ¥ (t) Y(t)

4.3. The Legendre transformation

In this section we define the Legendre transformation on Lie algebroids and establish the
equivalence between the Lagrangian and Hamiltonian formalisms when the Lagrangian
function is hyperregular.

k k k
LetL: & E — RbealLagrangian function and @2: QF — [TE@®E)* (A=1,...,k
the Poincaré—Cartan 1-sections associated with L, as defined in (4.20).

Definition 4.28. The Legendre transformation associated with L is the smooth map
k k
Leg :® E >@DE™
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defined by
Leg(bu,, . by,) = ([Cea(br,s - b)) s [Lea(bu,s - br,)]),s
where
d
[Ceg(br,, .. bx,)] " (e) = LBy bag Hseq by ¢, € E,.
s=0

In other words, for each A,
[Cea(br,, ... bx,)]" (eg) = O (br,, ... bx,)(2), (4.44)

k
where Z is a point of the fiber of (75(® E )b, over the point

k
bq:(blq,...,bk) e E,

q
such that
T(Z) = ey,
k k
T :TE(@® E) = E x 19T (®E) — E being the projection on the first factor. Z is of the form
Z= (eq, qu). The map Leg is well defined, and its local expression is

A . oL
2 ! ) %) = ! s A o I
ea(d’, v%) (q > )
in view of which it is easy to prove that the Lagrangian L is regular if and only if £eg is a local
diffeomorphism.

Remark 4.29. When E = T Q, the Legendre transformation defined here coincides with the
Legendre transformation introduced by Giinther in [14].

Leg induces a map

E £k k £k k
TELeg: T (@ E)=E X 1gT(®E) > T (® E*) = E X 19T (BE")
defined by
T* Seg(eg. ) = (eq: (200). (0 (ws,).

k k k
where ¢, € E; b, € E and (eq,vp,) € TE(® E) = E x 7oT(®E). TELeg is well
defined because the diagram

o

eg k
® E*

Q

k
oK

is commutative.
In local coordinates (see (4.2) and (4.30)),
: AL - 9%L 0°L
TECeg(q', ¥4, 2% wh) = (q’, —, 2%, 2% oy — +wﬂ—>. (4.45)
SR ) Iy; agiayl P aylayh

k
Theorem 4.30. The pair (T E Leg, Leg) is a morphism between the Lie algebroids (T£ (®E),
~ ~ k ~x% ~ %
o5 [ -19) and (TE(@ E*), pt ,[-, 1° ). Moreover, if @’L‘ and QZ‘ are respectively the
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k
Poincaré—Cartan 1-sections and 2-sections associated with L: ®E — R, and ®4 and (Q4)
k
the Liouville 1-sections and 2-sections on TE(® E*), then

(TE Leg, Leg) 0" = OF, (TE Leg, Leg)*Q* = QF, 1 <A<k (4.46)

Proof. We first prove that (7 £ Leg, Leg) is a Lie algebroid morphism,
TE Leg

k k
TE (& E) TE(& E7)
k E.‘,cg k
S F @ E*

Let (¢') be local coordinates on Q, {e,} a local basis of Sec(E), and {Xa, V(f} and
k k
{yo,,ug} the corresponding local bases of sections of ?é s TE@® E) —® E and
k k
?éE* : TE(@E*) -@®E™). Then by (3.5), (4.6) and (4.45), straightforward computation

shows that

Lo dL
(TE Leg, Leg)* (V%) = X“ and (TE Leg, Leg)* (U) = dT" @ (a_a) (4.47)
Ya

foreacha =1,...,mand A =1, ..., k, where {X"‘, Vﬁ} and {y“, L{f} are the dual bases
of { Xy, V2} and {V,, U4}, respectively. By (4.6) and (4.34) we therefore conclude that

(TE Leg, seg)*(dTE(éE*> f) = dTE(éE)( f o Leg)
(TE Leg, Eeg)*(dTE(éf*)ya) = dTE(éE)((TESeg, Leg)* V%)
(TE Seg, Seg)" (A7 @) = 47" ) (T Seg, Leg)U?)
for all functions f € C* (éE*) and all « and A. Consequently, (7ZLeg, Leg) is a Lie

algebroid morphism.
To show that (7€ Leg, Leg)*O4 = @2‘, we note that by (3.5), (4.35) and (4.44),

[(TF Leg, Leg)* O Iy, (eq, w,) = ®éeg(bq)(64’ (Leg)s () (vp,))
= [2eg(bq)]A(eq) = @2(]),1)(6,1, qu)-

Finally, since (7 £ £eg, Leg) is a Lie algebroid morphism, this result for 1-sections implies
that

(TE Leg, Leg)* QA = Q. 0

Remark 4.31.

(i) When k& = 1, this theorem reduces to theorem 3.12 of [19].
(i) When E = T Q and prg = idr, it establishes the relationship between the Lagrangian
and Hamiltonian formalisms in the standard k-symplectic approach.

We next assume that L is hyperregular, that is, that Leg is a global diffeomorphism. In
k
this case we may consider the Hamiltonian function H :®E* — R defined by
H = E; o (Leg)™ !,
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where E; is the Lagrangian energy associated with L, given by (4.24), and (Leg)~! is the
inverse of the Legendre transformation:

k Leg~!

k
®E

Ey

Lemma 4.32. [f the Lagrangian L is hyperregular; then T Leg is a diffeomorphism.

Proof. Since in this case £eg is a global diffeomorphism so that there exists an inverse map
k k
Leg™ ! @ E* @ E, TF Leg has the differentiable inverse
k k

(TELeg) ' : TE(@® E*) - TE@D E)
given by

(T* Leg) ™" (ag, v;) = (ag, (Leg™").(b]) (vn:)).

* k * E k * k *

where a, € E, b} €® E* and (a,, vb(;«) eTE@E*) = E x 1oT(®E™). O

The following theorem establishes the equivalence between the Lagrangian and
Hamiltonian k-symplectic formulations on Lie algebroids.

Theorem 4.33. Let L be a hyperregular Lagrangian. There is a bijective correspondence
k
between the set {n : R* —@& E |n is an integral section of a solution &; of the geometric

k
Euler-Lagrange equations (4.26)} and the set { : R* —@® E* | is an integral section of
some solution £y of the geometric Hamilton equations (4.38)}.

Proof. The proof is similar to the standard case: see [46]. Essentially, if &, = (éL', el s’g):

k k
® E — (T E),i(ea E) is a solution of the geometric Euler-Lagrange equations for Lie
algebroids (4.26), then &y = (5}1, R E,’;) is a solution of (4.38), where

En=TECego & o (Leg)™ .
k
Moreover, if n : R* —®E is an integral section of &1 = (Sg, cey S’If) then

k
Legon: RE >E*

is an integral section of €y = (E}I ey 5;‘1)
The converse is proved similarly. ]
Remark 4.34. The case k = 1 shows the equivalence between the Lagrangian and

Hamiltonian forms of autonomous mechanics on Lie algebroids (see, for instance, [8]) and
the case E = T Q, prg = idrg, the equivalence between the Lagrangian and Hamiltonian
formulations in the standard k-symplectic framework (see [46]).
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5. Examples

Harmonic mappings [5, 6, 44, 48]. In this example we consider the harmonic mappings from
R? into a Lie group G. The harmonic mapping Lagrangian is given [44] by

L. ¢x.by) = 5(07 6. ¢7 ' 0u) + 3007 by 07 y), 5.1
where (-, -) is the Killing form on g and ¢,, ¢, are the partial derivatives of ¢ : R? — G with
respect to the local coordinates (x, y) of R? . The associated field equation is 7 (¢) = 0, where
7(¢) is the tension of ¢, defined for general smooth mappings by

: 3%¢! apt ., 3¢l dgk

_L,(d))l :hAB< ¢ C ¢ i ¢ d) >’

— —_— 4+, —
arAotB ABgiC " TIk geA B

i=1,...,dimG,

the hup being the components of a metric on R* with Christoffel symbols I'{,, and C;k the
Christoffel symbols of the bi-invariant metric on G. In our case, hi4p is of course just the flat
Euclidian metric.

Here we deal with the case G = SO (3), considered as embedded in gl(3), in which case
the Killing form (-, -) is just the trace,

(§,n) = —trace(§n),
and the Lagrangian (5.1) isa function L : TSO(3) & TSO(3) = TZI(SO(3)) — R.
Since 7 (SO(3)) = SO3) x s0(3) x s0(3), we identify T, (SO(3))/SO(3) with
50(3) x s50(3), and we consider the projection / of L to s0(3) x so0(3) given by
[(€1, &) = —3trace(§7) — jtrace(§3). §1.6 € 50(3).
If {Ey, E,, E3} is a basis of 50(3), so that §; = y*E, (i = 1,2),[is given locally by
3
o o o 2 o 2
(v}, )5) = Z (OF)"+ (%))
a=1
Since a Lie algebra is an example of a Lie algebroid, we can apply the theory developed
in section 4.1. The Euler-Lagrange equations (4.28) in this case are

aot o

1 +8y2 =0

ort  ar? —1,2.3:A=1,2
ay;t ay% ﬂy (Ol— b E) £ - 9 )
otB8 _at_A+C‘3”yByA_0

The Poisson-sigma model. Consider a Poisson manifold (Q, A). Then the cotangent bundle
T*Q has a Lie algebroid structure with anchor map
p:T*Q — TO
B = AB, ),
and bracket
[o, Bl = ip@) dB — ipp) da — dA(a, B).
In local coordinates, the bivector A has the expression
1 .. 0 d
A=-AV—Arn—.
2 9dq' dq/
We can consider the Lagrangian for the Poisson-sigma model as a functionon T*Q@T* Q.
Thus, if (¢°, p, p}) denotes local coordinates on T*Q @ T*Q, the local expression of the
Lagrangian is (see [32])

L=—L1AUplp2
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A long but straightforward calculation shows that the Euler—Lagrange equations (4.28) in

this case are
1 .. [dp? oap! dAM
A (—p’ - Py p;lp?) =0,

2 arl 92 aq!
aqi ij A

58 +ATP; =0,

ap?  ap!  aAM

op; _op; | 1p2 = 0.

ot a2 " agi Pk
However, in view of the morphism condition, the first equation vanishes. The solution of the
remaining two is a field ¢ : R> — T*Q @ T*Q given locally by

¢(t) = (¢'®). p/ (®). P} (®).
The conventional form of the field equations for the Poisson-sigma model [43] is
d¢/ + AT* P, =0
dPj + SAN P A PL =0,
where the P; = pidt' + p?de* (j =1, ..., n) are 1-forms on R,
Remark 5.1. Poisson-sigma models were originally introduced by Schaller and Strobl [42]

and Ikeda [16] so as to unify several two-dimensional models of gravity and cast them into a
common form with Yang—Mills theories.

Systems with symmetry. Consider a principal bundle 7 : Q0 — Q = Q/G. Let
A : TQ — g be a fixed principal connection with curvature B : TQ ® TQ — g.
The connection A determines an isomorphism between the vector bundles 7Q/G — Q and
TQ®F — O,whereg = (O x g)/G is the adjoint bundle (see [7]):

[vg] < Tzm(vg) @ [(g, A(vg))],

where v; € T; 0. The connection allows us to obtain a local basis of sections of
Sec(TQ/G) = X(Q) ® Sec(g) as follows. Let ¢ be the identity element of the Lie group G
and assume that there are local coordinates (qi), 1 <i < dim Q, and that {£,} is a basis of g.
The corresponding sections of the adjoint bundle are the left-invariant vector fields £%:

SaL(g) = TeLg(Ea)a
where L, : G — G is left translation by g € G. If

d
Al— | =4,
Bq (g.¢)

then the corresponding horizontal lifts on the trivialization U x G are the vector fields

a\" 9
— ) = — — A%l .
aq" aq'

The elements of the set

h
i gL
agi) ¢
are by construction G-invariant, and therefore, constitute a local basis of sections {e;, e,} of

Sec(TQ/G) = X(Q) ® Sec(@).
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Denote by (¢', y’, y*) the induced local coordinates of T Q/G. Then

9 9 )
B(-= = |=8l,
99" (g.0) 997 (4.0)

L _oar 04

T dgl dg
the C7,, being the structure constants of the Lie algebra. The structure functions of the Lie
algebroid T Q/G — Q are determined (see [19]) by

where

— C5, A7 A,

lei, ejllrp 6 = —Bijec
b
le:, eallrp 6 = CopAiec

Lea: esllro/6 = Copec

Proscle) = 9

Proc(ea) =0,

ko
and for a Lagrangian function L :@ T Q/G — R the Euler—Lagrange field equations are

d (8L)_8L+ L LAL o, . oL

d (oL e s L . 0L
oy = CapA7Y -C

drA ﬁ C@ ahycﬁ
_ v _ Oy
C ot arA
0y oy o .
= o5~ o~ Biveya + CopATYRYA +CopYaYs:

If Q is a single point, that is O = G, then TQ/G = g, the Lagrangian is a function
k
L :® g — R and the field equations reduce to

d oL . 5 0L
—_ —_ = —(C —_
dart \ayd abYCoye
ay< Y . u
= 905 i T CanVaY,
a local form of the Euler—Poincaré equations (see, for instance, [6] and [32]).
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